Data Bootcamp: Fall 2021
Where and When
- Instructor: Benjamin Zweig (bz425@stern.nyu.edu)
 - Teaching Fellows: Duey Xu (dx2028@nyu.edu), Yash Thesia (yt2188@nyu.edu)
 - Meeting times: Tuesday (5:00PM - 7:45PM)
 - Meeting place: Bldg:TISC Room: LC25 Loc: Washington Square
 
Important Links
- 
    
THE SYLLABUS All the important details about the course, procedures, important dates, etc.
 - 
    
THE BOOK The topics in the first half are all in the book. We will follow this closely. At the book link, click the large blue Read button to read online – or download the pdf. Both come with links.
 - 
    
NOTEBOOKS Github repository of notebooks used in class.
 - 
    
CAMPUSWIRE PAGE The password will be sent to your NYU emails.
 
Problem Set Submissions
Assignments will be posted on Brightspace. Submit your python code in ipython notebook format on Brightspace.
Week By Week Topic Guide…
Python Fundamentals I:
Handouts:  Outline 1 | Outline 2 | Book | Three ideas 
Examples:  Gapminder | Cancer Screening | Uber in NYC | Medical Expenditures | Mortality | Earthquake | Gender Pay Gap | Fertility | Vaccines 
Summary:  Intro; calculations; assignments; strings; lists; tuples; built-in functions; objects; methods; tab completion; True and False; comparisons; conditionals; slicing; loops; function definitions and returns; dictionaries.
What’s due:
Python Fundamentals II, Intro to Packages:
Handouts:  Outline | Book chapter 
Summary:  Slicing; loops; function definitions and returns; dictionaries; packages; import; Pandas. 
What’s due:
Cleaning:
Handouts:  Outline | Code_Pandas_Cleaning| Applications 
Summary:  Cleaning datasets.
What’s due:
Filtering:
Handouts:  Outline | Code_Pandas_Cleaning| Applications 
Summary:  Filtering data.
What’s due:
Shaping:
Handouts: Shaping Outline| Book chapter 
 Code_Pandas_Shaping 
Code examples | current indicators | demography | Airbnb 
Summary: Aggregations and grouping data 
What’s due:
Matplotlib:
Handouts: Matplotlib Outline | Book chapter 
Code_Matplotlib (Download “Raw” as ipynb) 
Code examples | current indicators | demography | Airbnb 
Summary: Three approaches to graphics: dataframe plot methods, plot(x,y), and fig/ax objects and methods; lines, scatters, bars, horizontal bars, styles.  
What’s due:
Merging:
Handouts: Code_Pandas_Combining | Summarizing 
Summary:  Merging. Combining dataframes (merge, concatenate). 
What’s due:
Regression:
Handouts: 
Summary:  Basic Regression Analysis 
What’s due:
Machine Learning:
Handouts: 
Summary:  We will cover Scikit-learn, Machine Learning package to model various classification, regression and clustering algorithms.
What’s due: